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Finding posterior modes

• The mode is the value that appears most often in a set of data
values.

• The posterior mode is often used in statistical practice as a
point estimate.

• We summarize the posterior by its mode for computational
convenience or as a quick approximation.

• In Bayesian computation, we search for modes as a way to
begin mapping the posterior density.

• We discuss algorithms for finding posterior modes.
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Conditional maximization

• Simply start somewhere in the target distribution.

• Setting the parameters at rough estimates and then alter one
set of components of θ at a time, leaving the other
components at their previous value at each step increasing the
log posterior density.

• Assuming the posterior density is bounded, the steps will
eventually converge to a local mode.
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Newton’s method

• Iterative approach based on a quadratic Taylor series
approximation of the log posterior density.

• It is also acceptable to use an unnormalized posterior density,
since uses only the derivatives of L(θ) = log p(θ|y)

• The mode-finding algorithm :
• Choose a staring value, θ0

• Set, the new iterate, θt , to maximize the quadratic
approximation;

θt = θt−1 − [L
′′

(θt−1)]−1L
′
(θt−1).

• The starting value is important ; algorithm is not guaranteed
to converge from all starting values, particularly tn regions
where −L′′ is not positive definite.
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Posterior modes on the boundary of parameter space

• The posterior mode is a good point summary of a symmetric
posterior distribution.

• If the posterior is asymmetric however, the mode can be a
poor point estimate.
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Posterior modes on the boundary of parameter space
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Posterior modes on the boundary of parameter space

• The problem in the above example arise because the mode is
taken as a posterior summary.

• If we are planning to summarize the posterior distribution by
its mode, it can make sense to choose the prior distribution
accordingly.

• We prefer a prior model such as τ ∼ Gamma(2, 2
A ), a gamma

distribution with shape 2 and some large scale parameter.

• This density starts at 0 when τ = 0 and then increases linearly
from there, eventually curving gently back to zero for large
values of τ .
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Boundary-avoiding prior distribution for a correlation param-
eter

• Within each group j = 1, · · · , J(= 10), we assume a linear
model:

yij ∼ N(θj1 + θj2xi + 1), for i = 1, · · · nj (= 5)

• The two regression parameters in each group j are modeled as(
θj1

θj2

)
∼ N

((
0
0

)
,

(
τ2
1 ρτ1τ2

ρτ1τ2 τ2
2

))
• We average over the linear paramters θ and work with the

maginal likelihood, which can be computed analytically as

p (y | τ1, τ2, ρ) =
J∏

j=1

N
(
θ̂j | 0,Vj + T

)
where θ̂j and Vj are the LSE and corresponding covariance
matrix from regressing y and x for the data group j . 11



Boundary-avoiding prior distribution for a correlation param-
eter

• We assume the true values of the variance parameters are
τ1 = τ2 = 0.5 and ρ = 0

• We simulate data and compute the marginal likelihood
Lprofile(ρ|y) = maxτ1,τ2 p(y |τ1, τ2, ρ)(Uniform prior of ρ).
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Posterior modes on the boundary of parameter space
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Boundary-avoiding prior distribution for a correlation param-
eter

• If the plan is to summarize inference by the posterior mode of
ρ, we would replace the U(−1, 1) prior distribution with
p(ρ) ∝ (1− ρ)(1 + ρ), which is equivalent to Beta(2, 2) on the
transformed parameter ρ+1

2

• For a general d × d covariance matrix we choose the
Wishart(d + 3,AI ) prior density, which is zero but with a
positive constant derivative at the boundary.

• In two dimensions, the multivariate model in the limit A→∞
corresponds to the prior distribution p(ρ) ∝ (1− ρ)(1 + ρ) as
before.
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Fitting multivariate normal densities based on the curvature
at the modes

• Once the mode or modes have been found, we can construct
an approximation based on the normal distribution.

• For simplicity we first consider the case of a single mode at θ̂,
where we fit a normal distribution to the first two derivatives
of the log posterior density function at θ̂:

pnormal approx(θ) = N(θ|θ̂,Vθ)

where Vθ = [−d2 log p(θ|y)
dθ2

|θ=θ̂]−1
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Laplace’s method for analytic approximation of integrals

• Instead of approximating just the posterior with normal
distribution, we can use Laplace’s method to approximate
integrals of a smooth function times the posterior h(θ)p(θ|y).

• Laplace approximation :∫
h(x)eMf (x)dx ≈

(
2π
M

)d/2 h (x0) eMf (x0)

|−H(f ) (x0)|1/2

as M →∞
• When d is dimension of θ, u(θ) = log(h(θ)p(θ|y)),

E(h(θ) | y) ≈ h (θ0) p (θ0 | y) (2π)d/2 ∣∣−u′′ (θ0)
∣∣1/2
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Mixture approximation for multimodal densities

• Suppose we have found K modes in the posterior density. the
target density p(θ|y) can be approximated by

pnormal approx (θ) ∝
K∑

k=1

ωkN
(
θ | θ̂k ,Vθk

)
.

• For each k , the mass ωk of the kth component of the
multivariate normal mixture can be estimated by equating the
(unnormalized) posterior density q(θ̂k |y), to the approximation
pnormal approx(θ̂k ) at each of the K modes.

• If the modes are fairly widely separated and the normal
approximation is appropriate for each mode, then we obtain
ωk = q(θ̂k |y)|Vθk |1/2
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Mixture approximation for multimodal densities

• Normal-mixture approximation :

pnormal approx (θ) ∝
K∑

k=1

q
(
θ̂k | y

)
exp

(
−1
2

(
θ − θ̂k

)T

V−1
θk

(
θ − θ̂k

))
• T approximation :

pt approx (θ) ∝
K∑

k=1

q
(
θ̂k | y

)(
ν +

(
θ − θ̂k

)T

V−1
θk

(
θ − θ̂k

))−(d+ν)/2
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Finding marginal posterior modes using EM

• In problems with many parameters, normal approximations to
the joint distribution are often useless, and the joint mode is
typically not helpful.

• It is often useful, however, to base an approximation on
marginal posterior mode of a subset of the parameters.

• θ = (γ, φ) and suppose we are interested in first approximating
p(φ|y).

• After approximating p(φ|y) as a normal or t or a mixture of
these, we may be able to approximate the conditional
distribution, p(γ|φ, y) as normal or t or mixture of these with
parameters depending on φ.
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Derivation of the EM

• EM finds the modes of the marginal posterior distribution,
p(φ|y), averaging over the parameters γ.

• We start with the simple identity

log p(φ|y) = log p(γ, φ|y)− log p(γ|φ, y)

and take expectation, treating γ as a random variable with the
distribution p(γ|φold , y), where φold is the current guess.

log p(φ|y) = Eold (log p(γ, φ|y))− Eold (log p(γ|φ, y))
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Derivation of the EM

log p(φ|y) = Eold (log p(γ, φ|y))− Eold (log p(γ|φ, y))

Eold (log p(γ|φ, y))− Eold (log p(γ|φold , y))

= Eold log
p(γ|φ, y)

p(γ|φold , y)

≤ log Eold (
p(γ|φ, y)

p(γ|φold , y)
)

= log

∫
p(γ|φ, y)

p(γ|φold , y)
p(γ|φold , y)dγ

= log1 = 0
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Derivation of the EM

• Eold (log p(γ|φ, y)) is maximized at φ = φold .

• Eold (log p(γ, φ|y)) is called Q(φ|φold ).

• We increase the Q(φ|φold ) while not increasing
Eold (log p(γ|φ, y)) and so the total must increase.
• The EM algorithm can be described algorithmically as follows.

• Start with a crude parameter estimate, φ0

• For t=1,2,...;
• E-step : Determine the expected log posterior density function

Q(φ|φt−1)
• M-step : φt = argmaxφ Q(φ|φt−1)
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Example

• Suppose, y1, · · · , yn iid N(µ, σ2).

• We assume, µ ∼ N(µ0, τ
2
0 ) prior distribution on µ and the

standard noninformative uniform prior distribution on log σ.

• We use EM algorithm to find the marginal posterior mode of µ.
• Joint log posterior :

log p(µ, σ | y) = − 1
2τ2

0
(µ− µ0)2−(n+1) log σ− 1

2σ2

n∑
i=1

(yi − µ)2+C
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Example

• E-step :

Eold log p(µ, σ | y) =− 1
2τ2

0
(µ− µ0)2 − (n + 1)Eold (log σ)

− 1
2
Eold

(
1
σ2

) n∑
i=1

(yi − µ)2 + constant.

• The posterior distribution of σ2 given µ is scaled inverse-χ2

Eold

(
1
σ2

)
= E

(
1
σ2 | µ

old, y

)
=

(
1
n

n∑
i=1

(
yi − µold)2)−1

Eold log p(µ, σ | y) =− 1
2τ2

0
(µ− µ0)2

− 1
2

(
1
n

n∑
i=1

(
yi − µold)2)−1 n∑

i=1

(yi − µ)2 + const.

26



Example

• M-step : Find the µ that maximizes the above expression.

• Marginal posterior distribution of µ has the form of a normal
distribution, M-step is achieved by the mode of the density

µnew =

1
τ2
0
µ0 + n

1
n

∑n
i=1(yi−µold )

2 ȳ

1
τ2
0

+ n
1
n

∑n
i=1(yi−µold )

2

.
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Approximating conditional and marginal posterior densities

• The normal, t, and other analytically convenient distributions
can be poor approximations to a joint posterior distribution.

• However, we can partition the parameter vector as θ = (γ, φ),
in such a way that an analytic approximation works well for the
conditional posterior density, p(γ|φ, y)

• The mode-finding techniques and normal approximation can
be applied directly to the marginal posterior density if the
marginal distribution can be obtained analytically.

• If not, the EM algorithm may allow us to find the mode of the
marginal posterior density and construct an approximation.
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Approximating conditional and marginal posterior densities

• On occasion it is not possible to construct an approximation to
p(φ|y) using any of these methods, if we have an analytic
approximation to the conditional posterior density, p(γ|φ, y),
we may derive an approximation.

papprox (φ | y) =
p(γ, φ | y)

papprox (γ | φ, y)

• We must specify a value γ(possibly as a function of φ) since
the left side does not involve γ at all.
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Improving an approximation using importance sampling.

• We can improve the approximation with importance sampling,
using draws of γ from each value of φ at which the
approximation is computed.

p(φ | y) =

∫
p(γ, φ | y)dγ

=

∫
p(γ, φ | y)

papprox (γ | φ, y)
papprox (γ | φ, y)dγ

= Eapprox

(
p(γ, φ | y)

papprox (γ | φ, y)

)
Eapprox averages over γ using the conditional posterior
distribution, papprox (γ|φ, y).
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Variational inference

• EM proceeds by alternately evaluating conditional expectations
of the log density and using these to maximize a function of a
set of hyperparameters

• In variational bayes, the iterations lead to a closed-form
approximation that is the closest fit to the posterior
distribution within some specified class of functions.

• A parametric approximation g(θ) is constructed iteratively
using an expectation procedure that, as we shall show, has the
effect of minimizing the Kullback-Leibler divergence from the
target posterior distribution p(θ|y),

KL(g‖p) = −Eg

(
log

(
p(θ | y)

g(θ)

))
= −

∫
log

(
p(θ | y)

g(θ)

)
g(θ)dθ
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Variational inference

• We shall use the notation φ for the hyperparameters of the
variational approximation. Thus we write g(θ) as g(θ|φ).

• The algorithm proceeds by staring with some guess of φ and
then iteratively updating it in a way that is mathematically
guaranteed to decrease the Kullback-Leibler divergence at each
step.

• It can make sense to check the results by running the
algorithm several times from different starting points.
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The class of approximate distributions

• There are various ways of defining the class of distributions for
g(θ|φ).
• A standard approach is to constrain th components of θ to be

independent:

g(θ | φ) =
J∏

j=1

gj (θj | φj )

for a J-dimensional parameter θ.
• For each j , we examine the expectation of the log posterior

density, log p(θ|y), considering it as a function of θj , averaging
over the distributions g−j that represent the other J − 1
dimensions of θ.
• We do not need to evaluate the expectation; we merely need

to figure out its mathematical form as a function of θj .
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The Variational Bayes algorithm

• Once the classes of approximating distributions gj (θj |φj ) have
been identified, the computation begins with guesses of all the
hyperparameters φ.

• We then cycle through the distributions gj , in each of these
steps updating the hyperparameters φj so that log gj (θj |φj ) is
set to Eg−j (log p(θ|y)) =

∫
log p(θ|y)g−j (θ−j |φ−j )dθ−j

• The steps of variational Bayes decrease KL(g ||p) and thus
gradually bring the approximating distribution g(θ) closer to
the target posterior distribution p(θ|y).
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Example

• Suppose full vector of parameters θ has 10 dimesions,
corresponding to α1, α2, · · · , α8, µ, τ , and the log posterior
density is

log p(θ | y) = −1
2

8∑
j=1

(yj − αj )
2

σ2
j

−8 log τ−1
2
1
τ2

8∑
j=1

(αj − µ)2+ const.

• Independent densities:

g(θ) = g (α1, . . . , α8, µ, τ) = g (α1) · · · g (α8) g(µ)g(τ).
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Example

•

g (αj ) = N

αj |
1
σ2

j
yj + E

( 1
τ2

)
E(µ)

1
σ2

j
+ E

( 1
τ2

) ,
1

1
σ2

j
+ E

( 1
τ2

)


g(µ) = N

µ | 1
8

8∑
j=1

E (αj ) ,
1
8

1
E
( 1
τ2

)


g
(
τ2) = Inv-χ2

τ2 | 7, 1
7

8∑
j=1

E
(

(αj − µ)2
)

• Rewrite above factors,

g (αj ) = N
(
αj | Mαj , S

2
αj

)
, for j = 1, . . . , 8

g(µ) = N
(
µ | Mµ, S

2
µ

)
g
(
τ2) = Inv−χ2 (τ2 | 7,M2

τ

)
38



Example

• For simplicity, we draw the unbounded parameters
Mα1 , · · · ,Mα8 ,Mµ from independent N(0, 1) and draw the
bounded parameters, Sα1 , · · · ,Sα8 ,Sµ from independent
U(0, 1).

• We iterate through α, µ, τ at each iteration updating
distributions. Then we turn around and label the newly
computed means and standard deviations as the updated M ′s

and S ′s.

• Difference with EM is that VI is distributions rather than point
estimates.
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Variational Bayes followed by importance sampling

• Variational methods are commonly used as an approximate
method when simulation-based full Bayes is too
computationally expensive, as with very large models or
datasets.

• It might make sense to use the variational estimate as a
starting point for a stochastic algorithm leading to a better
approximation to the target distribution.

• Compute S simulation draws, θs from g and for each compute
the importance weight p(θs |y)

g(θs) .

• As usual we only need theses weights up to an arbitrary
multiplicative constant, thus it would be fine to use
unnormalized densities.
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Variational Bayes followed particle filtering

• The distribution of importance ratios can have long tails,
leading to unstable averages.

• We would recommend without replacement sampling.

• A more general approach would be particle filtering, using
draws from the variational bayes as a starting point and then
moving through the target density using Metropolis or
Hamiltonian Monte Carlo and splitting and removing points as
appropriate.
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Expectation propagation

• Expectation propagation is another deterministic iterative
algorithm in which the posterior distribution p(θ|y) is
approximated by a best-fit distribution from some specified
parametric family.
• We first describe the algorithm in general and then go through

the steps of applying to logistic regression.
• The target distribution p(θ|y), which we write as f (θ),

suppressing the dependence on y which is not directly relevant
for these computations.
• We assume :

f (θ) =
n∏

i=0

fi (θ)

As with many Bayesian computations, f ′i s are the
unnormalized density functions.
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Expectation propagation

• Expectation propagation can be expressed more generally, but
it is think of f0(θ) as prior density and each fi (θ) as the
likelihood for one data point.

• A key difference between VI and EP is that variational
inference is typically based on a separation of g into factors for
each ’parameter’, whereas expectation propagation factorizes
g based on a partition of the ’data’.
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Exponential families, sufficient statistics, and natural param-
eters

• The approximating distribution g(θ) should be in the
exponential family.

• This means that the density can be written as a normalizing
function times the exponential of a linear function of ’sufficient
statistics’ of θ.

• The coefficients of the sufficient statistics inside the
exponential are called the natural parameters of the model.
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The expectation propagation algorithm

• Define the (unnormalized)

cavity distribution: g−i (θ) ∝ g(θ)

gi (θ)

tilted distribution: g−i (θ)fi (θ)

• We construct an approximation to the tilted distribution, using
a moment-matching approach.
• This approach is the updated g(θ). Then back out the

updated approximating factor, gi (θ) = g(θ)/g−i (θ).
• The result is that we have a new gi (θ) which approximates
fi (θ).
• Moment matching : Setting the expectation of the sufficient

statistics of g to the corresponding expectations of θ in
g−i (θ)fi (θ).
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The expectation propagation algorithm

• For example, if g(θ) has the form N(θ|µ,Σ), then tn the
moment-matching step we set
µ = Etiltedi (θ) =

∫
θg−i (θ)fi (θ)dθ and

Σ = vartiltedi (θ) =
∫

(θ − µ)(θ − µ)Tg−i (θ)fi (θ)dθ.
• In practical implementations of expectation propagation, these

integrals can be done in closed form or via a transformation
that reduces the problem to a low-dimensional integral.
• If g is updated after each moment-matching step, the

algorithm is called sequential EP, whereas if g is updated only
after all tilted moments have been computed the algorithm is
called parallel EP.
• Parallel EP is typically much faster as it requires less frequent

updates of the higher-dimensional function of g .

47



The expectation propagation algorithm

• Moment matching corresponds to minimizing the
KL-divergence from the tilted distribution to the new
approximated marginal distribution, but the iterative matching
of the marginals does not guarantee that the KL from the full
posterior distribution to the overall approximation is minimized.

• There is no guarantee convergence for EP, but the algorithm
has been used successfully in many applications.
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Integrated nested Laplace approximation(INLA)

• INLA is another form of posterior approximation involves
partitioning the parameters into a large set γ conditional on a
smaller set of hyperparameters φ.

• Construct a joint gaussian approximation for p(γ|φ, y) and
approximate p(φ|y) and p(γi |φ, y).

• Approximations to p(γi |y) are obtained by numerically
integrating over the low dimensional papprox (φ|y).

• INLA works best when there are not many hyperparameters in
the model.
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Approximate Bayesian computation(ABC)

• ABC is applied to set of statistical procedures based on
drawing parameters θ from an initial or approximate
distribution, then sampling replicated data y rep|θ from the
model, and then accepting or rejecting the sample based on
the closeness of y rep to the observed data y .

• The attraction of ABC is that it does not require computation
of the likelihood function, only the ability to simulate y rep|θ
from the data distribution.
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Approximate Bayesian computation(ABC)

• ABC has the form of simple rejection sampling:
• Draw θ from the prior distribution p(θ) and then y rep from the

data distribution, p(y rep|θ), thus obtaining a single draw of
y rep from its marginal distribution.

• Compute a discrepancy measure d(y rep, y), where d is defined
so that it is zero if y and y rep are identical and is larger the
more different they are in some relevant dimensions.

• Accept θ if d(y rep, y) < ε for some preset threshold ε,
otherwise reject.

• ABC involves three challenges.
• One needs to define a discrepancy measure d
• ε needs to be set small enough that the data provide

information, but not so small that all the simulations get
rejected.

• If the prior distribution is broad enough, the rejection rate can
be unacceptably high even if the discrepancy measure and
threshold have been chosen well. 52



Approximate Bayesian computation(ABC)

• ABC has the form of simple rejection sampling:
• Draw θ from the prior distribution p(θ) and then y rep from the

data distribution, p(y rep|θ), thus obtaining a single draw of
y rep from its marginal distribution.
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Unknown normalizing factors in the likelihood

• A new problem arises when the sampling density p(y |θ) has an
unknown normalizing factor that depends on θ.
• Such models often arise in problems that are specified

conditionally, such as in spatial statistics.
• In general we use the following notation:

p(y |θ) =
1

z(θ)
q(y |θ),

and
z(θ) =

∫
q(y |θ)dy

• z(θ) is called the normalizing factor of the family of
distributions, we can no longer call it a constant.
• Then the posterior density :

p(θ|y) ∝ p(θ)
1

z(θ)
q(y |θ).
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Posterior computations involving an unknown normalizing fac-
tor

• Obtain an analytic estimates of z(θ) using some approximate
method(Laplace method).

• Construct an approximation to the posterior distributions.

• If θ is only one or two-dimensional it may be reasonable to
compute z(θ) over a finite grid and interpolate to obtain an
estimate of z(θ) as a function of θ.
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Computing the normalizing factor

• The normalizing factor can be computed, for each value of θ,
using some of the numerical integration approaches.

• The importance sampling estimated is based on the identity

z(θ) =

∫
q(y | θ)

g(y)
g(y)dy = Eg

(
q(y | θ)

g(y)

)
.

where Eg averages over y under the approximation density
g(y).

• The estimate of z(θ) is 1
S

∑S
s=1 q (y s | θ) /g (y s), based on

simulations y s from g(y).
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